Collatz conjecture answer

10/28/2021 12:54:00 AM ・0 comments

 Yesterday I watched this video https://youtu.be/QgzBDZwanWA  about 3n + 1, I'm not a mathematician, but in my opinion, I understand how this can be proved.

for this we will have to invent a new world in mathematics.

the first thing we have to come up with is the concept of related numbers. let's say 1 this is the first generation 1 * 2 the second generation 2 * 2 the third generation

1, 2, 4, 8, 16, 32, 64................ let's call this group the first group in honor of the ancestor.

according to our logic, this whole sequence consists of relatives of even numbers, which have a common ancestor 1 of an odd number.


let's take another other tree of relatives

of natural numbers, the next tree of relatives is 3

3, 6, 12, 24, 48, 96, 192............ third group 

the next tree of relatives is 5

5, 10, 20, 40, 80,  160, 320............ fifth group


Do related groups overlap with other groups?

the answer is never, the group goes to infinity and always produces unique numbers because they have different ancestors.

in reverse order, if we divide the numbers of one group by two, it always ends with an odd number, with the exception of one odd number, which is a common ancestor

64 / 2 = 32  , 32 / 2 =16  , 16 / 2 = 8 , 8 / 2 =4 , 4 / 2=2 , 2 / 2= 1

192 / 2=96 ,  96 / 2=48, 48 / 2=24,  24 / 2=12, 12 / 2=6,  6 / 2= 3

320 / 2=160, 160 / 2=80, 80 / 2=40, 40 / 2=20, 20 / 2=10, 10 / 2= 5


Grandfather and grandson formula

how to connect the first generation with the third? how does a grandfather treat his grandson?
1, 2, 4, 8, 16, 32, 64................

3n+n
this works for the first three numbers
for example:
3*1+1=4 

3, 6, 12, 24, 48, 96, 192............

4n=3n+n
3*3+3=12

5, 10, 20, 40, 80,  160, 320............

4n=3n+n
3*5+5=20


7,14,28,56,112...........

3*7+7=28

9,18,36,72,144.......

3*9+9=36

we can take every integer and start by multiplying
x * 4n if the result  = even / 2,  if the result odd number *4n we olweis find group begin 

why it happens ? the main thing is to get into an even number and the road will always indicate which group we are in

for example:

48,   48*4=192   , 192 /2 = 96     , 96/2=48,  24, 12 , 6 , 3

333, 1332 , 666, 2664, 1332, 666 

7, 28 , 14,  7

after that we can return to our task with the video and write three different formulas to find three groups


Results for Group 1 Results for Group 2 Results for Group 3

N*3+1 N*3+3 N*3+5

A B C
1 99 99 99 99 99 99
2 298 =A1*3+1 300 =B1*3+3 302 =C1*3+5
3 149 =IF(ISEVEN(A2),A2/2,A2*3+1) 150 =IF(ISEVEN(B2),B2/2,B2*3+3) 151 =IF(ISEVEN(C2),C2/2,C2*5+5)
4 448 =IF(ISEVEN(A3),A3/2,A3*3+1) 75 =IF(ISEVEN(B3),B3/2,B3*3+3) 760 =IF(ISEVEN(C3),C3/2,C3*5+5)
5 224 =IF(ISEVEN(A4),A4/2,A4*3+1) 228 =IF(ISEVEN(B4),B4/2,B4*3+3) 380 =IF(ISEVEN(C4),C4/2,C4*5+5)
6 112 =IF(ISEVEN(A5),A5/2,A5*3+1) 114 =IF(ISEVEN(B5),B5/2,B5*3+3) 190 =IF(ISEVEN(C5),C5/2,C5*5+5)
7 56 =IF(ISEVEN(A6),A6/2,A6*3+1) 57 =IF(ISEVEN(B6),B6/2,B6*3+3) 95 =IF(ISEVEN(C6),C6/2,C6*5+5)
8 28 =IF(ISEVEN(A7),A7/2,A7*3+1) 174 =IF(ISEVEN(B7),B7/2,B7*3+3) 480 =IF(ISEVEN(C7),C7/2,C7*5+5)
9 14 =IF(ISEVEN(A8),A8/2,A8*3+1) 87 =IF(ISEVEN(B8),B8/2,B8*3+3) 240 =IF(ISEVEN(C8),C8/2,C8*5+5)
10 7 =IF(ISEVEN(A9),A9/2,A9*3+1) 264 =IF(ISEVEN(B9),B9/2,B9*3+3) 120 =IF(ISEVEN(C9),C9/2,C9*5+5)
11 22 =IF(ISEVEN(A10),A10/2,A10*3+1) 132 =IF(ISEVEN(B10),B10/2,B10*3+3) 60 =IF(ISEVEN(C10),C10/2,C10*5+5)
12 11 =IF(ISEVEN(A11),A11/2,A11*3+1) 66 =IF(ISEVEN(B11),B11/2,B11*3+3) 30 =IF(ISEVEN(C11),C11/2,C11*5+5)
13 34 =IF(ISEVEN(A12),A12/2,A12*3+1) 33 =IF(ISEVEN(B12),B12/2,B12*3+3) 15 =IF(ISEVEN(C12),C12/2,C12*5+5)
14 17 =IF(ISEVEN(A13),A13/2,A13*3+1) 102 =IF(ISEVEN(B13),B13/2,B13*3+3) 80 =IF(ISEVEN(C13),C13/2,C13*5+5)
15 52 =IF(ISEVEN(A14),A14/2,A14*3+1) 51 =IF(ISEVEN(B14),B14/2,B14*3+3) 40 =IF(ISEVEN(C14),C14/2,C14*5+5)
16 26 =IF(ISEVEN(A15),A15/2,A15*3+1) 156 =IF(ISEVEN(B15),B15/2,B15*3+3) 20 =IF(ISEVEN(C15),C15/2,C15*5+5)
17 13 =IF(ISEVEN(A16),A16/2,A16*3+1) 78 =IF(ISEVEN(B16),B16/2,B16*3+3) 10 =IF(ISEVEN(C16),C16/2,C16*5+5)
18 40 =IF(ISEVEN(A17),A17/2,A17*3+1) 39 =IF(ISEVEN(B17),B17/2,B17*3+3) 5 =IF(ISEVEN(C17),C17/2,C17*5+5)
19 20 =IF(ISEVEN(A18),A18/2,A18*3+1) 120 =IF(ISEVEN(B18),B18/2,B18*3+3)

20 10 =IF(ISEVEN(A19),A19/2,A19*3+1) 60 =IF(ISEVEN(B19),B19/2,B19*3+3)

21 5 =IF(ISEVEN(A20),A20/2,A20*3+1) 30 =IF(ISEVEN(B20),B20/2,B20*3+3)

22 16 =IF(ISEVEN(A21),A21/2,A21*3+1) 15 =IF(ISEVEN(B21),B21/2,B21*3+3)

23 8 =IF(ISEVEN(A22),A22/2,A22*3+1) 48 =IF(ISEVEN(B22),B22/2,B22*3+3)

24 4 =IF(ISEVEN(A23),A23/2,A23*3+1) 24 =IF(ISEVEN(B23),B23/2,B23*3+3)

25 2 =IF(ISEVEN(A24),A24/2,A24*3+1) 12 =IF(ISEVEN(B24),B24/2,B24*3+3)

26 1 =IF(ISEVEN(A25),A25/2,A25*3+1) 6 =IF(ISEVEN(B25),B25/2,B25*3+3)

27

3 =IF(ISEVEN(B26),B26/2,B26*3+3)



Author Kakhaber Omiadze, Tbilisi, Georgia

Post a Comment

Note: Only a member of this blog may post a comment.

If you can't commemt, try using Chrome instead.